

Switching Unit for Variothermal Control Product Catalogue 2018-10

Switching Unit Vario-5

Special challenges in injection moulding cannot be overcome with classical mould temperature control. The solution is a variothermal control: High temperature during injection, cold temperature in the cooling phase.

Together with two temperature control units Thermo-5, the Vario-5 forms a variothermal system according to the fluid-fluid technique. Alternatingly, it links either the hot or the cold unit to the same circuit. It is quite possible to use existing moulds if the temperature control channels are suitably arranged.

Vario-5 provides easy and quiet operation. It supports the user in determining the optimum settings.

...after the heat, stay cool!

Improved part quality

- · Eliminate weld lines
- · Contour accuracy in the moulding of minute structures
- Optimal surface quality
- · Reduce sink marks

Improved temperature control

- · Short heating up and cooling down times
- Optimize cycle time and quality

...standard temperature control units mean minimal investment

- Multiple use of the units, also for standard applications
- · Use of existing temperature control units
- Cost friendly concept
- · Much experience with proven systems

...small, clean and quiet

Squeezes into almost everywhere

Made possible by ingenious hydraulic modules

Can also be used in a clean room

· Fibre-free insulation, abrasion resistant castors and high-gloss finish

Silent

- No pressure shocks
- · Without compressed air

HB-THERM

HB-THERM VARIO-5

...precise, powerful and efficient

- Highly accurate process management Switching procedures are monitored
- Smaller heating and cooling power requirement Integrated energy buffer *1*

...safe, reliable and low on maintenance

- Fully automated process monitoring
- Durable construction
- · Solely non-corroding materials in the hydraulic circuit
- Switching without pressure shocks
- Improved protection for the mould
- · Closed system without oxygen contact
- Avoids steam, scaling and corrosion

...easy, intelligent and convenient

- Central command via only one unit Thermo-5 or control module Panel-5
- Clever wizards determine setpoint temperatures, delays and switching times
- Freely selectable control mode
- Recording of data via USB and analysis in Excel

018-09-04, 14:38	HB-THERM	Tu 2018-09-04, 14:38	HB-THERM
VC1 199 TH1 TC1		No. VC1 199 TH1 TC1	
170.3 TC1 85	1 1151.8°C	111 170.3 101 85.1	UE1151.8 °C
line	168.7 °C		200 °C
m line	153.4 °C	RAA	
ation actual/nominal	11.3 K		
lation ratio TH	75 %		0.00
lation ratio TC	-2 %		100 %
rate	12.3 L/min		0 %
e time (current)	54 s	5 4 5	L-100 %
	Process operation	VC Pr	ocess operation

Standard Equipm	nent		
Hydraulics		Closed hydraulic system without oxygen contact Energy buffer <i>1</i>	
		Hydraulic circuit made of non-corroding materials	
Functions		Wizards determine setpoint temperatures, delays and switching times	
Monitoring / Safety		Monitoring of the switching procedures	
		Automatic limit value settings for temperatures and flow	
		Electrically operated valves (no compressed air)	
		Lockable and abrasion resistant castors (PUR)	
		Fibre-free insulation	
Command / Display		Large choice of display windows and values	
		Storage of specific variothermal parameters	
		Data recording	
		Status light	
Interface	HB (IN/OUT)	HB-Therm data interface CAN for connection to a temperature control unit	
		Thermo-5 or control module Panel-5	
		2 sockets Sub-D 15 pin (1 male and 1 female)	
	Typ J, K, T, Pt 100	External sensor connector (thermocouple or Pt 100 in 3-wire circuit)	
		1 socket Audio 5 pin (female), connector 90° (male) included	
	0–10 V, 4–20 mA	External sensor (standard signals)	
		1 socket 8 pin M12 (female)	
	Ext. Control	5 digital inputs and 2 digital outputs for switchover commands via	
		potential-free contact (pulse or continuous contact)	
		1 socket Harting Han 12Q (female), connecting cable 10 m with plug incl.	

Communication (\rightarrow P. 6, Fig. 1)

Services

Optional services for variothermal applications on a time and material basis:

• Assessment of variothermal application based on mould data (approx. 1 day) The current injection moulding application is assessed in terms of variothermal control. This gives an assessment of whether the desired objectives can be met and with which equipment.

• Moulding support of the variothermal process (approx. 1 day) Planning and documentation of trial series, running trials, production support and optimisation

Technical Specifications

Switching unit	Heat transfer medium		Water
	Maximum main line temperature	°C	180
Туре			HB-VS180
Energy buffer 🕖	Volume 0,9 L	US1	•
	Volume 1,8 L	US2	o ¹⁾
Accessories ²⁾	Connection set (hydr.) Vario-5/Thermo-5, housing size 1 or 2; 3 m		
	(insulated hoses)	O/ID	T26847-901
	Connection set (hydr.) Vario-5/Thermo-5, housing size 3; 3 m		
	(insulated hoses)	O/ID	T26848-901
	Connection set (hydr.) Vario-5/Mould; 2 m		
	(male adapters for mould G½ incl., insulated hoses)	O/ID	T26841-701
	Cable HB, 5 m	O/ID	T24858-3
	Cable HB/CAN, 5 m	O/ID	T26825-1
	Cable CAN, 5 m	O/ID	T22571-1
	Proximity switch with magnetic base, 10 m	O/ID	T26821-10
	IR-Temperature sensor with magnetic base, 10 m	O/ID	T26819-10
	Emissivity sticker 25 mm (7 pieces)	O/ID	T26843-1
	Mains-connector Type J (Swiss Type 12) 230 V, 10 A; LNPE	O/ID	T27551
	Mains-connector Type F (SchuKo) 230 V, 16 A; LNPE	O/ID	T27550
Services	Assessment of variothermal application based on mould data	O/ID	T26844
	Moulding support of the variothermal process	O/ID	T26845

Ordering example: HB-VS180-US1, English (without accessories)

Dimensions $(\rightarrow P. 7, Fig. 2)$ He	ght	mm	484
W	dth	mm	240
De	pth	mm	675
Weight max.		kg	39
Connection, Input/Output (H/C/M)			G¾
		bar, °C	25, 200

• Standard specification • Optional

¹⁾ Recommended for mould circuits of 0,9 L and larger

 $^{2)}$ $\,$ For detailed information and other lenghts \rightarrow Accessories program (D8064-EN) $\,$

Recommendation for Unit Type Thermo-5

Hot water circuit	Thermo-5, HB-160 or HB-180, pump 4M, heating and cooling power depends on application
Cold water circuit	Thermo-5, HB-140, pump 4M, heating and cooling power depends on application (if the unit for
	the hot water circuit is run at over 160 °C, the unit for the cold water circuit must be equipped with
	a 17 bar safety valve and a manometer 25 bar)
Communication	Interface equipment for singular units: Interface HB and interface CAN (ZC)

Note: In order to ensure compatibility, detailed clarification must be obtained for equipment that differs from this recommendation.

Communication (Fig. 1)

Basic circuit diagram

Examples

Description	Note
Machine control	max. 1
Control modul Panel-5	max. 1
Temperature control unit Thermo-5, singular unit	max. 16 (per command)
Temperature control unit Thermo-5, modular unit	
Flow meter Flow-5	max. 32 (at 4 circuits each)
Switching unit Vario-5	max. 8
Communication via serial data interface	Maximum number of units, operating range and transfer of
DIGITAL (ZD), CAN (ZC) or PROFIBUS-DP (ZP)	flow rate values depend on machine control and protocol
Communication OPC UA via Ethernet (ZO)	
Communication interface HB	Order of connection is not relevant
Communication interface HB/CAN	To remotely control singular units
Communication interface CAN (ZC)	
External Control	Assignment dependent on machine control unit
	Description Machine control Control modul Panel-5 Temperature control unit Thermo-5, singular unit Temperature control unit Thermo-5, modular unit Flow meter Flow-5 Switching unit Vario-5 Communication via serial data interface DIGITAL (ZD), CAN (ZC) or PROFIBUS-DP (ZP) Communication OPC UA via Ethernet (ZO) Communication interface HB Communication interface CAN (ZC) External Control

Command ¹⁾ Command deactivated

General Technical Data

Power supply	Mains voltage	100–240 V, 50/60 Hz
	Mains cable to unit	LNPE, 4 m (plug on request)
Environment	Temperature	5–40 °C
	Humidity	35–85 % RH (non-condensing)
Colour	Cover	RAL 7035 (glossy light grey), RAL 5012 (glossy light blue)
	Access cover	RAL 7021 (glossy black grey)
Protection class		IP 44
Standards		EN 50581, EN 61000-6-2, EN 61000-6-4, EN 60204-1,
		EN ISO 13732-1, EN ISO 12100
Certification/Approval		CE (compliance with relevant CE directives)
Temperature measurement	Resolution	0,1 °C
	Tolerance	±3 K

Dimensions (Fig. 2)

HB-VS180, scale 1:10

IN H	Input hot water circuit
OUT H	Output hot water circuit

IN C Input cold water circuit OUT C Output cold water circuit

 IN M
 Input mould circuit (from mould)

 OUT M
 Output mould circuit (to mould)

Variothermal Control

In injection moulding some typical problems cannot be solved by traditional temperature control:

- visible weld lines in optically critical areas.
- incomplete moulding of the finest structures and lacking contour accuracy (e.g. for optical lenses, micro- or nanostructures, piano lacquer)
- · insufficient surface quality of foamed and fibre-reinforced parts
- · excessively high injection pressures for extremely small cross-sections
- · sink marks at extreme wall thickness ratios

Reasons: In injection moulding the hot plastic melt meets a relatively cool mould surface in the injection phase.

The latter needs to be cool in order to dissipate the heat out of the melt to solidify the part. The mould temperature depends not only on the material, but also on the demands of the component quality and the cycle time. At high temperatures the quality of the component increases, thus longer cycle times are necessary. This negatively affects the unit costs. Therefore, the choice of the mould temperature is always a compromise between quality and cost effectiveness.

If no optimum quality is achieved with a compromise or impermissible process parameters would be needed, an alternative temperature control strategy is necessary. A high temperature during injection followed by a cold temperature in the cooling phase can be a solution. It is called a variothermal control. Two temperature control units, one operating at a higher and one at a lower temperature combined with a switching unit will solve such demanding tasks.

Process procedure in injection moulding with variothermal control

The Process

The fluid-fluid technique sends alternatingly hot and cold temperature control medium through the temperature control channel immediately below the cavity surface, controlled by the machine cycle. The temperatures are set on the two temperature control units. If there is a temperature sensor available at a suitable position in the mould, the switch-over or the start of injection can also be made depending on the mould temperature to increase process reliability.

Operating mode: Heating

Operating mode: Cooling

Control

Cyclic heating and cooling is synchronised with the cycle of the injection moulding machine. The highest temperature is reached in the injection phase, the lowest at the time of demoulding. For this purpose, the signals for the switch-over have to precede by the amount of the system delay.

The parameters relevant to the injection moulding process such as injection, holding pressure or cooling time are set via the machine controls. Therefore it suggests itself that the signals for controlling the switch-over should also be set via the machine controls. For this, digital output signals of the machine can be used. Depending on the machine type, values for the variothermal process can be set more or less comfortably.

If only one signal is available for the synchronisation with the injection moulding process the respective delay times in relation to the machine signal must be set on the variothermal equipment. Although the machine interface thus is much simpler it has the distinct disadvantage of having to adjust the settings on the variothermal equipment as well when changing the machine settings.

The timer signals for heating and cooling are independent from the actual temperature in the mould. A separate temperature sensor is not necessary. Software wizards help to determine the necessary delays in a simple way.

Frame Conditions

In variothermal control the temperature at the surface of the cavity will be actively changed within the injection cycle. The area around the cavity is thus cyclically heated and cooled. Depending on the configuration of the temperature control channels the temperature at the surface of the cavity reacts stronger or weaker and the area is larger or smaller.

To efficiently achieve the largest temperature gradients possible the following is recommended:

Distance of the temperature control	The distances between the temperature control channel and the cavity must be
channel from the surface of the sovitu	kent as small as passible
Variothermal mass	Keep the variothermal area as small as possible:
	 Run only those circuits on variothermal process which have an influence on the
	critical mould area
	• As possible, create inserts that are small and can be thermally isolated from the
	rest of the mould.
Isolation	Isolate the variothermal areas with isolating materials or clearances from the
	rest of the mould.
Connections	Connect the variothermal areas (inserts) directly with specific pipes not in
	contact with the rest of the mould (clearance) to the temperature control system.
	Avoid supply via the mould plates or frames as well as heavy distribution and
	measuring systems, as they will unnecessarily increase the variothermal mass.
Material	In critical cases, inserts of copper alloy or other materials with good thermal
	conductivity are to be used for the variothermal areas (The thermal conductivity
	of copper is more than five times greater than that of steel).
Temperature control channel cross	Large channel diameters or several channels increase the surface and thereby
section	the transfer of heat.
Flow rate	The temperature control channels should be designed to achieve the best
	possible flow rate. This improves the transfer of heat between the temperature
	control medium and the mould and results in shorter response times or quicker
	temperature gradients in the mould.

Note: Variothermally controlled circuits can come up to the temperature of the hot unit. Seals, couplings, hoses need to be selected accordingly. The cyclical temperature changes can cause moveable inserts such as sliders to jam.

Example for the design of a mould-insert for variothermal control

HB-THERM[®]

Temperature Control Technology

HB-Therm worldwide.

HB-Therm is one of the leading manufacturers of temperature control units worldwide. Since 1967 HB-Therm AG has been developing and producing innovative temperature control technology to the highest quality standards. With its comprehensive know-how and motivated workforce, the company has succeeded in becoming the technology leader in its sector.

This Swiss family enterprise employs around 150 staff and has established itself as a systems supplier offering seamless customer support from machine design through to a complete after-sales service. Production is exclusively in St. Gallen. Own subsidiaries (Sales & Service) in Germany and France as well as 40 other national agencies are representing HB-Therm around the globe.

The company's quality and environmental management system is based on the continual improvement of all activities and processes and is certified to ISO 9001/14001. All its products and services are based on a philosophy of offering "Swiss-made" quality to customers.

Customer service. Included.

With our sales and marketing network service we can offer comprehensive expert advice and assistance in:

- Optimum temperature control process
- Determination of the specification of the product and advice regarding functionality
- · Electrical and hydraulic connections
- Data interfaces
- Heat transfer medium
- · Servicing of the equipment

Our experts are always available for support when questions of specialist requirements or applications arise or when putting the equipment into operation, or for the operational training of your staff.

HB-THERM[®]

HB-THERM AG Spinnereistrasse 10 (WU 3) Postfach 9006 St. Gallen Switzerland Phone +41 71 243 6-530, Fax -418 info@hb-therm.ch, www.hb-therm.ch

Subsidiaries

HB-THERM GmbH Dammstrasse 70-80 53721 Siegburg Germany Phone +49 2241 5946-0, Fax -20 info@hb-therm.de, www.hb-therm.de

HB-THERM S.A.S. 5378 Route du Pou du Ciel ZI de Reyrieux 01600 Reyrieux France Phone +33 4 74 00 43 30 Fax +33 4 26 23 68 22 commercial@hb-therm.fr, www.hb-therm.fr

Distributors

Australia (AU) Parrington Group Pty. Ltd., Magill SA 5072 Austria (AT) Luger Gesellschaft mbH, 3011 Purkersdorf Belgium (BE) AJ Solutions BVBA, 2240 Zandhoven Brazil (BR) HDB Comércio e Indústria Ltda., Cotia (SP) 06705-110 China (CN) ARBURG (Shanghai) Co., Ltd., 201100 Shanghai ARBURG Machine & Trading, 518108 Shenzhen Dongguan Cenglary Trading Co., Ltd., 523845 Dongguan City Tianjin Cenglary Trading Co., Ltd., 300452 Tianjin City Jiangsu Cenglary Engineering & Trading Co., Ltd., 215300 Kunshan Devel. Dist. Croatia (HR) Luger Gesellschaft mbH, 3011 Purkersdorf Czech Republic (CZ) Luger spol. s.r.o., 251 01 Ricany Denmark (DK) SAXE Hansen, 3500 Værløse Estonia (EE) Telko Estonia OU, 13522 Tallinn Finland (FI) Engel Finland Oy, 00380 Helsinki France (FR) HB-THERM S.A.S., 01600 Reyrieux Germany (DE) HB-THERM GmbH, 53721 Siegburg Hong Kong (HK) ARBURG (HK) Ltd., Quarry Bay Hungary (HU) Luger Kft., Budapest 1147 India (IN) Salnik Solutions, 400072 Mumbai Indonesia (ID) ARBURG Indonesia, Jakarta 10150 Ireland (IE) KraussMaffei (UK) Ldt, WA5 7TR Warrington Israel (IL) SU-PAD Ltd., 4809102 Rosh Ha'ayn Italy (IT) Nickerson Italia Srl, 24030 Brembate di Sopra (BG) Japan (JP) ARBTECHNO Ltd., Iwaki 973-8406

Korea, Republic of (KR) IMTS, 1449 Bucheon-si Latvia (LV) Telko Lativia SIA, 1026 Riga Liechtenstein (LI) HB-THERM AG, 9006 St. Gallen Lithuania (LT) Telko Lietuva UAB, 51183 Kaunas Luxembourg (LU) AJ Solutions BVBA, 2240 Zandhoven Malaysia (MY) ARBURG Sdn Bhd, 46150 Petaling Jaya Mexico (MX) Engel Mexico S.A. de C.V., 76246 El Marques, Querétaro Netherlands (NL) ROBOTECH bv, 4824 AS Breda New Zealand (NZ) AOTEA MACHINERY LTD., Auckland 1145 Poland (PL) ELBI-Wrocław Sp. z o.o., 53-234 Wrocław Portugal (PT) Netstal Máquinas, S.A., 08100 Mollet del Vallès Romania (RO) Plastic Technology Service Srl, 032451 Bucuresti Singapore (SG) ARBURG PTE LTD., Singapore 139965 Slovakia (SK) Luger spol. s.r.o., 251 01 Ricany Slovenia (SI) Luger Gesellschaft mbH, 3011 Purkersdorf South Africa (ZA) GREEN TECH Machinery Ltd, 1709 Quellerina Spain (ES) Netstal Máquinas, S.A., 08100 Mollet del Vallès Sweden (SE) Forvema AB, 511 54 Kinna Switzerland (CH) HB-THERM AG, 9006 St. Gallen Taiwan (TW) Morglory International Co., Ltd., Taichung City 40757 Thailand (TH) ARBURG (Thailand) Co., Ltd., Samutprakarn 10540 Turkey (TR) ARBURG Plastik Enjeksiyon, 34524 Yakuplu-Büyükçekmece/Istanbul United Kingdom (GB) KraussMaffei (UK) Ldt, WA5 7TR Warrington United States (US) Frigel North America, East Dundee, IL 60118